Feedback Loop References

Planck (black body radiation)

Forster, P. et al. 2021. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment C Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. AZhai, A. Pirani, S. L. E Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

 

Water vapor

Dessler A, Schoeberl M, Wang T, Davis S, Rosenlof K. 2013. Stratospheric water vapor feedback. Proceedings of the National Academy of Sciences 110:18087–18091. National Acad Sciences.

Dessler A, Zhang Z, Yang P. 2008. Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophysical Research Letters 35. Wiley Online Library.

Romps DM, Kuang Z. 2009. Overshooting convection in tropical cyclones. Geophysical Research Letters 36. Wiley Online Library.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

 

Sea ice albedo

Blackport R, Screen JA. 2020. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science advances 6:eaay2880. American Association for the Advancement of Science.

Bony S et al. 2006. How well do we understand and evaluate climate change feedback processes? Journal of Climate 19:3445–3482.

Cao Y, Liang S, Chen X, He T. 2015. Assessment of sea ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data. Journal of Climate 28:1248–1259.

Chavas J-P, Grainger C. 2019. On the dynamic instability of Arctic sea ice. npj Climate and Atmospheric Science 2:1–7. Nature Publishing Group.

de Vernal A, Hillaire-Marcel C, Le Duc C, Roberge P, Brice C, Matthiessen J, Spielhagen RF, Stein R. 2020. Natural variability of the Arctic Ocean sea ice during the present interglacial. Proceedings of the National Academy of Sciences 117:26069–26075. National Acad Sciences.

Hanna E, Cropper TE, Hall RJ, Cappelen J. 2016. Greenland Blocking Index 1851–2015: a regional climate change signal. International Journal of Climatology 36:4847–4861. Wiley Online Library.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Hudson SR. 2011. Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic. Journal of Geophysical Research: Atmospheres 116. Wiley Online Library.

Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ. 2008. Tipping elements in the Earth’s climate system. Proceedings of the national Academy of Sciences 105:1786–1793. National Acad Sciences.

Liu J, Chen Z, Francis J, Song M, Mote T, Hu Y. 2016. Has Arctic sea ice loss contributed to increased surface melting of the Greenland Ice Sheet? Journal of Climate 29:3373–3386.

Pistone K, Eisenman I, Ramanathan V. 2014. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of Sciences 111:3322–3326. National Acad Sciences.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

Tedesco M, Mote T, Fettweis X, Hanna E, Jeyaratnam J, Booth J, Datta R, Briggs K. 2016. Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Communications 7:1–6. Nature Publishing Group.

Thackeray CW, Hall A. 2019. An emergent constraint on future Arctic sea-ice albedo feedback. Nature Climate Change 9:972–978. Nature Publishing Group.

Winton M. 2006. Does the Arctic sea ice have a tipping point? Geophysical Research Letters 33. Wiley Online Library.

 

Glacier and ice sheet albedo

Naegeli K, Huss M. 2017. Sensitivity of mountain glacier mass balance to changes in bare-ice albedo. Annals of Glaciology 58:119–129. Cambridge University Press.

Pattyn F et al. 2018. The Greenland and Antarctic ice sheets under 1.5 C global warming. Nature Climate Change 8:1053–1061. Nature Publishing Group.

Pattyn F. 2018. The paradigm shift in Antarctic ice sheet modelling. Nature communications 9:1–3. Nature Publishing Group.

Sun S et al. 2020. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal of Glaciology 66:891–904. Cambridge University Press.

Weertman J. 1976. Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261:17–20. Nature Publishing Group.

 

Sea level rise

Barron EJ, Sloan II J, Harrison C. 1980. Potential significance of land—sea distribution and surface albedo variations as a climatic forcing factor; 180 my to the present. Palaeogeography, Palaeoclimatology, Palaeoecology 30:17–40. Elsevier.

Nicholls RJ, Cazenave A. 2010. Sea-level rise and its impact on coastal zones. science 328:1517–1520. American Association for the Advancement of Science.

 

Snow cover

Qu X, Hall A. 2007. What controls the strength of snow-albedo feedback? Journal of Climate 20:3971–3981.

Qu X, Hall A. 2014. On the persistent spread in snow-albedo feedback. Climate dynamics 42:69–81. Springer.

Thackeray CW, Qu X, Hall A. 2018. Why do models produce spread in snow albedo feedback? Geophysical Research Letters 45:6223–6231. Wiley Online Library.

 

Clouds

Bony S et al. 2006. How well do we understand and evaluate climate change feedback processes? Journal of Climate 19:3445–3482.

Ceppi P, Brient F, Zelinka MD, Hartmann DL. 2017. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdisciplinary Reviews: Climate Change 8:e465. Wiley Online Library.

Forster, P. et al. 2021. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment C Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. AZhai, A. Pirani, S. L. E Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Gettelman A, Sherwood S. 2016. Processes responsible for cloud feedback. Current climate change reports 2:179–189. Springer.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

Trenberth KE, Zhang Y, Fasullo JT, Taguchi S. 2015. Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. Journal of Geophysical Research: Atmospheres 120:3642–3659. Wiley Online Library.

 

Dust

Carslaw K, Boucher O, Spracklen D, Mann G, Rae J, Woodward S, Kulmala M. 2010. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry & Physics 10.

Kok JF, Ward DS, Mahowald NM, Evan AT. 2018. Global and regional importance of the direct dust-climate feedback. Nature Communications 9:1–11. Nature Publishing Group.

Naik, V. et al. 2021. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical E Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, J N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, B T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

 

Other aerosols

Carslaw K, Boucher O, Spracklen D, Mann G, Rae J, Woodward S, Kulmala M. 2010. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry & Physics 10.

Naik, V. et al. 2021. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical E Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, J N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, B T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Paulot F, Paynter D, Winton M, Ginoux P, Zhao M, Horowitz LW. 2020. Revisiting the impact of sea salt on climate sensitivity. Geophysical Research Letters 47:e2019GL085601. Wiley Online Library.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

Thornhill GD et al. 2020. Effective Radiative forcing from emissions of reactive gases and aerosols–a multimodel comparison. Atmospheric Chemistry and Physics Discussions:1–29. Copernicus GmbH.

 

Ocean stability

Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. 2020. Increasing ocean stratification over the past half-century. Nature Climate Change:1–8. Nature Publishing Group.

 

Ocean circulation

Buckley MW, Marshall J. 2016. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics 54:5–63. Wiley Online Library.

Gent PR. 2018. A commentary on the Atlantic meridional overturning circulation stability in climate models. Ocean Modelling 122:57–66. Elsevier.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Lenton TM, Rockström J, Gaffney O, Rahmstorf S, Richardson K, Steffen W, Schellnhuber HJ. 2019. Climate tipping points—too risky to bet against. Nature 575:592–595.

Levitus S, Antonov J, Boyer T, Garcia H, Locarnini R. 2005. EOF analysis of upper ocean heat content, 1956–2003. Geophysical research letters 32. Wiley Online Library.

Liu W, Fedorov AV, Xie S-P, Hu S. 2020. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Science advances 6:eaaz4876. American Association for the Advancement of Science.

Liu W, Xie S-P, Liu Z, Zhu J. 2017. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Science Advances 3:e1601666. American Association for the Advancement of Science.

Williamson MS, Collins M, Drijfhout SS, Kahana R, Mecking JV, Lenton TM. 2018. Effect of AMOC collapse on ENSO in a high resolution general circulation model. Climate dynamics 50:2537–2552. Springer.

 

Ocean solubility pump

Bialik OM, Sisma-Ventura G, Vogt-Vincent N, Silverman J, Katz T. 2022. Role of oceanic abiotic carbonate precipitation in future atmospheric CO2 regulation. Scientific reports 12:1–8. Nature Publishing Group.

Ciais P et al. 2014. Carbon and other biogeochemical cycles. Pages 465–570 Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Riebesell U, Körtzinger A, Oschlies A. 2009. Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences 106:20602–20609. National Acad Sciences.

 

Methane hydrates

Hong W-L, Torres ME, Carroll J, Crémière A, Panieri G, Yao H, Serov P. 2017. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nature communications 8:1–14. Nature Publishing Group.

Johnson HP, Miller UK, Salmi MS, Solomon EA. 2015. Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope. Geochemistry, Geophysics, Geosystems 16:3825–3839. Wiley Online Library.

Ruppel CD, Kessler JD. 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics 55:126–168. Wiley Online Library.

Shakhova N et al. 2017. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature communications 8:1–13. Nature Publishing Group.

Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson Ö. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327:1246–1250. American Association for the Advancement of Science.

Skarke A, Ruppel C, Kodis M, Brothers D, Lobecker E. 2014. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience 7:657–661. Nature Publishing Group.

Steffen W et al. 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences 115:8252–8259.

 

Lapse rate

Bony S et al. 2006. How well do we understand and evaluate climate change feedback processes? Journal of Climate 19:3445–3482.

Forster, P. et al. 2021. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment C Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. AZhai, A. Pirani, S. L. E Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Klocke D, Quaas J, Stevens B. 2013. Assessment of different metrics for physical climate feedbacks. Climate dynamics 41:1173–1185. Springer.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

 

Glacier and ice sheet elevation

Fyke J, Sergienko O, Löfverström M, Price S, Lenaerts JT. 2018. An overview of interactions and feedbacks between ice sheets and the Earth system. Reviews of Geophysics 56:361–408. Wiley Online Library.

Garbe J, Albrecht T, Levermann A, Donges JF, Winkelmann R. 2020. The hysteresis of the Antarctic ice sheet. Nature 585:538–544. Nature Publishing Group.

Robinson A, Calov R, Ganopolski A. 2012. Multistability and critical thresholds of the Greenland ice sheet. Nature Climate Change 2:429–432. Nature Publishing Group.

Weertman J. 1976. Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261:17–20. Nature Publishing Group.

 

Antarctic rainfall

Bradshaw CD, Langebroek PM, Lear CH, Lunt DJ, Coxall HK, Sosdian SM, de Boer AM. 2021. Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures. Nature Geoscience:1–8. Nature Publishing Group.

 

Sea ice growth

Bitz C, Roe G. 2004. A mechanism for the high rate of sea ice thinning in the Arctic Ocean. Journal of Climate 17:3623–3632.

Goosse H et al. 2018. Quantifying climate feedbacks in polar regions. Nature communications 9:1–13. Nature Publishing Group.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

 

Ozone

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Marsh DR, Lamarque J-F, Conley AJ, Polvani LM. 2016. Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1 (WACCM). Geophysical Research Letters 43:3928–3934. Wiley Online Library.

Naik, V. et al. 2021. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical E Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, J N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, B T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Nowack PJ, Abraham NL, Maycock AC, Braesicke P, Gregory JM, Joshi MM, Osprey A, Pyle JA. 2015. A large ozone-circulation feedback and its implications for global warming assessments. Nature climate change 5:41–45. Nature Publishing Group.

Sherwood S et al. 2020. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58:e2019RG000678. Wiley Online Library.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

 

Atmospheric chemical reaction rates

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Holmes CD. 2018. Methane feedback on atmospheric chemistry: Methods, models, and mechanisms. Journal of Advances in Modeling Earth Systems 10:1087–1099. Wiley Online Library.

Naik, V. et al. 2021. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical E Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, J N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, B T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Stocker TF et al. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 1535. Cambridge university press Cambridge, United Kingdom and New York, NY, USA.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

 

Chemical weathering

Kump LR, Brantley SL, Arthur MA. 2000. Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences 28:611–667. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA.

 

Peatlands

Ise T, Dunn AL, Wofsy SC, Moorcroft PR. 2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience 1:763–766. Nature Publishing Group.

Turetsky MR, Benscoter B, Page S, Rein G, Van Der Werf GR, Watts A. 2015. Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience 8:11–14. Nature Publishing Group.

Yang G et al. 2019. Peatland degradation reduces methanogens and methane emissions from surface to deep soils. Ecological Indicators 106:105488. Elsevier.

 

Wetlands (expansion)

Dean JF et al. 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics 56:207–250. Wiley Online Library.

Pangala SR, Moore S, Hornibrook ER, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist 197:524–531. Wiley Online Library.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

Turetsky MR et al. 2014. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global change biology 20:2183–2197. Wiley Online Library.

Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL, Zhu G, Huang C, Poulter B. 2017. Emerging role of wetland methane emissions in driving 21st century climate change. Proceedings of the National Academy of Sciences 114:9647–9652. National Acad Sciences.

 

Freshwater ecosystems

Dean JF et al. 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics 56:207–250. Wiley Online Library.

Emilson EJ, Carson MA, Yakimovich KM, Osterholz H, Dittmar T, Gunn J, Mykytczuk N, Basiliko N, Tanentzap A. 2018. Climate-driven shifts in sediment chemistry enhance methane production in northern lakes. Nature communications 9:1–6. Nature Publishing Group.

Guo M, Zhuang Q, Tan Z, Shurpali N, Juutinen S, Kortelainen P, Martikainen PJ. 2020. Rising methane emissions from boreal lakes due to increasing ice-free days. Environmental Research Letters 15:064008. IOP Publishing.

Yvon-Durocher G, Hulatt CJ, Woodward G, Trimmer M. 2017. Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nature Climate Change 7:209–213. Nature Publishing Group.

Zhu Y, Purdy KJ, Eyice Ö, Shen L, Harpenslager SF, Yvon-Durocher G, Dumbrell AJ, Trimmer M. 2020. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nature Climate Change 10:685–690. Nature Publishing Group.

 

Forest dieback

Allen CD et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest ecology and management 259:660–684. Elsevier.

Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55. Wiley Online Library.

Amigo I. 2020. When will the Amazon hit a tipping point? Nature 578:505–508. Nature Publishing Group.

Boulton CA, Good P, Lenton TM. 2013. Early warning signals of simulated Amazon rainforest dieback. Theoretical Ecology 6:373–384. Springer.

Huntingford C et al. 2013. Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience 6:268–273. Nature Publishing Group.

IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ. 2008. Tipping elements in the Earth’s climate system. Proceedings of the national Academy of Sciences 105:1786–1793. National Acad Sciences.

Lovejoy TE, Nobre C. 2018. Amazon Tipping Point. Science Advances 4. American Association for the Advancement of Science.

Nepstad DC, Stickler CM, Filho BS-, Merry F. 2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical transactions of the royal society B: biological sciences 363:1737–1746. The Royal Society London.

Nobre CA, Borma LDS. 2009. ‘Tipping points’ for the Amazon forest. Current Opinion in Environmental Sustainability 1:28–36. Elsevier.

Sanderson BM, Pendergrass AG, Koven CD, Brient F, Booth BB, Fisher RA, Knutti R. 2021. The potential for structural errors in emergent constraints. Earth System Dynamics 12:899–918. Copernicus GmbH.

Staal A, Flores BM, Aguiar APD, Bosmans JH, Fetzer I, Tuinenburg OA. 2020. Feedback between drought and deforestation in the Amazon. Environmental Research Letters 15:044024. IOP Publishing.

Steffen W et al. 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences 115:8252–8259.

Walker RT. 2020. Collision course: Development pushes Amazonia toward its tipping point. Environment: Science and Policy for Sustainable Development 63:15–25. Taylor & Francis.

 

Northern greening

Chae Y, Kang SM, Jeong S-J, Kim B, Frierson DM. 2015. Arctic greening can cause earlier seasonality of Arctic amplification. Geophysical Research Letters 42:536–541. Wiley Online Library.

de Wit HA, Bryn A, Hofgaard A, Karstensen J, Kvalevåg MM, Peters GP. 2014. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Global Change Biology 20:2344–2355. Wiley Online Library.

D’Orangeville L, Houle D, Duchesne L, Phillips RP, Bergeron Y, Kneeshaw D. 2018. Beneficial effects of climate warming on boreal tree growth may be transitory. Nature communications 9:1–10. Nature Publishing Group.

Gustafsson D, Lewan E, Jansson P-E. 2004. Modeling water and heat balance of the boreal landscape—comparison of forest and arable land in Scandinavia. Journal of applied meteorology 43:1750–1767.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Jia GJ, Epstein HE, Walker DA. 2009. Vegetation greening in the Canadian Arctic related to decadal warming. Journal of Environmental Monitoring 11:2231–2238. Royal Society of Chemistry.

Loranty MM, Berner LT, Goetz SJ, Jin Y, Randerson JT. 2014. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP 5 model simulations. Global change biology 20:594–606. Wiley Online Library.

Myers-Smith IH et al. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10:106–117. Nature Publishing Group.

Otto J, Raddatz T, Claussen M. 2011. Strength of forest-albedo feedback in mid-Holocene climate simulations. Climate of the Past 7:1027–1039. Copernicus GmbH.

Phoenix GK, Bjerke JW. 2016. Arctic browning: extreme events and trends reversing arctic greening. Global change biology 22:2960–2962. Wiley.

Thackeray CW, Fletcher CG, Derksen C. 2014. The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. Journal of Geophysical Research: Atmospheres 119:9810–9821. Wiley Online Library.

 

Insect outbreaks (forests)

Cudmore TJ, Björklund N, Carroll AL, Staffan Lindgren B. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. Journal of Applied Ecology 47:1036–1043. Wiley Online Library.

Kharuk VI, Im ST, Soldatov VV. 2020. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains. Journal of Mountain Science 17:1891–1900. Springer.

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Ebata T, Safranyik L. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. Nature Publishing Group.

 

Wildfire

Canadell JG et al. 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Carslaw K, Boucher O, Spracklen D, Mann G, Rae J, Woodward S, Kulmala M. 2010. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry & Physics 10.

Descals A, Gaveau DLA, Verger A, Sheil D, Naito D, Peñuelas J. 2022. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 378:532–537.

Lasslop G, Coppola AI, Voulgarakis A, Yue C, Veraverbeke S. 2019. Influence of fire on the carbon cycle and climate. Current Climate Change Reports 5:112–123. Springer.

Liu Y, Goodrick S, Heilman W. 2014. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. Forest Ecology and Management 317:80–96. Elsevier.

Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K. 2012. Climate change and disruptions to global fire activity. Ecosphere 3:1–22. Wiley Online Library.

Seiler W, Crutzen PJ. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic change 2:207–247. Springer.

 

Biogenic volatile organic compounds (BVOCs)

Carslaw K, Boucher O, Spracklen D, Mann G, Rae J, Woodward S, Kulmala M. 2010. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry & Physics 10.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Naik, V. et al. 2021. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical E Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, J N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, B T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Sporre MK, Blichner SM, Karset IH, Makkonen R, Berntsen TK. 2019. BVOC–aerosol–climate feedbacks investigated using NorESM. Atmospheric Chemistry and Physics 19:4763–4782. Copernicus GmbH.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

 

Soil carbon (other)

Conant RT et al. 2011. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biology 17:3392–3404. Wiley Online Library.

Crowther TW et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540:104–108. Nature Publishing Group.

Karhu K et al. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84. Nature Publishing Group.

Ni X, Groffman PM. 2018. Declines in methane uptake in forest soils. Proceedings of the National Academy of Sciences 115:8587–8590. National Acad Sciences.

Nottingham AT, Meir P, Velasquez E, Turner BL. 2020. Soil carbon loss by experimental warming in a tropical forest. Nature 584:234–237. Nature Publishing Group.

 

Soil nitrous oxide

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130122. The Royal Society.

Canadell JG et al. 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Erisman JW, Galloway J, Seitzinger S, Bleeker A, Butterbach-Bahl K. 2011. Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability 3:281–290. Elsevier.

Pinder RW, Davidson EA, Goodale CL, Greaver TL, Herrick JD, Liu L. 2012. Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences 109:7671–7675. National Acad Sciences.

Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Prentice IC, others. 2013. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Climate Change 3:666–672. Nature Publishing Group.

Xu-Ri, Prentice IC, Spahni R, Niu HS. 2012. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. New Phytologist 196:472–488. Wiley Online Library.

 

Permafrost

Anthony KW, von Deimling TS, Nitze I, Frolking S, Emond A, Daanen R, Anthony P, Lindgren P, Jones B, Grosse G. 2018. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature communications 9:1–11. Nature Publishing Group.

Burke EJ, Jones CD, Koven CD. 2013. Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. Journal of Climate 26:4897–4909.

Canadell JG et al. 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Froitzheim N, Majka J, Zastrozhnov D. 2021. Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave. Proceedings of the National Academy of Sciences 118. National Academy of Sciences.

Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP. 2014. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences 111:5819–5824. National Acad Sciences.

Isaksen IS, Gauss M, Myhre G, Walter Anthony KM, Ruppel C. 2011. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Global Biogeochemical Cycles 25. Wiley Online Library.

Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer E-M. 2018. Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change 8:309–312. Nature Publishing Group.

Schädel C et al. 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature climate change 6:950–953. Nature Publishing Group.

Schaefer K, Lantuit H, Romanovsky VE, Schuur EA, Witt R. 2014. The impact of the permafrost carbon feedback on global climate. Environmental Research Letters 9:085003. IOP Publishing.

Schuur EA et al. 2013. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119:359–374. Springer.

Schuur EA et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–179. Nature Publishing Group.

Steffen W et al. 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences 115:8252–8259.

Turetsky MR et al. 2020. Carbon release through abrupt permafrost thaw. Nature Geoscience 13:138–143. Nature Publishing Group.

 

Evapotranspiration from soils and plants

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

 

Microbial respiration (other)

Cavicchioli R et al. 2019. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology 17:569–586. Nature Publishing Group.

Smith TP, Thomas TJ, García-Carreras B, Sal S, Yvon-Durocher G, Bell T, Pawar S. 2019. Community-level respiration of prokaryotic microbes may rise with global warming. Nature communications 10:1–11. Nature Publishing Group.

 

Plant stress

Swann AL. 2018. Plants and drought in a changing climate. Current Climate Change Reports 4:192–201. Springer.

 

Desertification

D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW. 2013. Global desertification: drivers and feedbacks. Advances in water resources 51:326–344. Elsevier.

Pausata FSR, Gaetani M, Messori G, Berg A, de Souza DM, Sage RF, deMenocal PB. 2020. The Greening of the Sahara: Past Changes and Future Implications. One Earth 2:235–250. Elsevier.

Shukla P et al. 2019. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change (IPCC).

 

Sahara and Sahel greening

Bathiany S, Claussen M, Brovkin V. 2014. CO2-induced Sahel greening in three CMIP5 Earth system models. Journal of Climate 27:7163–7184.

Pausata FSR, Gaetani M, Messori G, Berg A, de Souza DM, Sage RF, deMenocal PB. 2020. The Greening of the Sahara: Past Changes and Future Implications. One Earth 2:235–250. Elsevier.

 

CO2 fertilization

Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55. Wiley Online Library.

Canadell JG et al. 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

De Kauwe MG, Keenan TF, Medlyn BE, Prentice IC, Terrer C. 2016. Satellite based estimates underestimate the effect of CO 2 fertilization on net primary productivity. Nature Climate Change 6:892–893. Nature Publishing Group.

Heinze C et al. 2019. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics 10:379–452. Copernicus GmbH.

Huntingford C et al. 2017. Implications of improved representations of plant respiration in a changing climate. Nature Communications 8:1–11. Nature Publishing Group.

Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F. 2015. Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21:3889–3900. Wiley Online Library.

Lombardozzi DL, Smith NG, Cheng SJ, Dukes JS, Sharkey TD, Rogers A, Fisher R, Bonan GB. 2018. Triose phosphate limitation in photosynthesis models reduces leaf photosynthesis and global terrestrial carbon storage. Environmental Research Letters 13:074025. IOP Publishing.

Norby RJ et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences 102:18052–18056. National Acad Sciences.

Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA. 2016. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531:633–636. Nature Publishing Group.

Skinner CB, Poulsen CJ, Mankin JS. 2018. Amplification of heat extremes by plant CO2 physiological forcing. Nature communications 9:1–11. Nature Publishing Group.

 

Coastal productivity

Alongi DM. 2015. The impact of climate change on mangrove forests. Current Climate Change Reports 1:30–39. Springer.

Björk M, Short F, Mcleod E, Beer S. 2008. Managing seagrasses for resilience to climate change. IUCN.

Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3:961–968. Nature Publishing Group.

Macreadie PI, Nielsen DA, Kelleway JJ, Atwood TB, Seymour JR, Petrou K, Connolly RM, Thomson AC, Trevathan-Tackett SM, Ralph PJ. 2017. Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment 15:206–213. Wiley Online Library.

Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9:552–560. Wiley Online Library.

 

Ocean metabolic rates

Boscolo-Galazzo F, Crichton KA, Barker S, Pearson PN. 2018. Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change? Global and Planetary Change 170:201–212. Elsevier.

Park J-Y, Kug J-S, Bader J, Rolph R, Kwon M. 2015. Amplified Arctic warming by phytoplankton under greenhouse warming. Proceedings of the National Academy of Sciences 112:5921–5926. National Acad Sciences.

Steffen W et al. 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences 115:8252–8259.

 

Ocean biological pump

Boyd PW. 2015. Toward quantifying the response of the oceans’ biological pump to climate change. Frontiers in Marine Science 2:77. Frontiers.

Canadell JG et al. 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Orr JC et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. Nature Publishing Group.

Passow U, Carlson CA. 2012. The biological pump in a high CO2 world. Marine Ecology Progress Series 470:249–271.

Pörtner H-O et al. 2014. Ocean systems. Pages 411–484 Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

Sully S, Burkepile DE, Donovan M, Hodgson G, Van Woesik R. 2019. A global analysis of coral bleaching over the past two decades. Nature communications 10:1–5. Nature Publishing Group.

 

Phytoplankton dimethyl sulfide (DMS)

Ayers GP, Cainey JM. 2008. The CLAW hypothesis: a review of the major developments. Environmental Chemistry 4:366–374. CSIRO.

Beman JM, Chow C-E, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proceedings of the National Academy of Sciences 108:208–213. National Acad Sciences.

Breider F, Yoshikawa C, Makabe A, Toyoda S, Wakita M, Matsui Y, Kawagucci S, Fujiki T, Harada N, Yoshida N. 2019. Response of N2O production rate to ocean acidification in the western North Pacific. Nature Climate Change 9:954–958. Nature Publishing Group.

Ciais P et al. 2014. Carbon and other biogeochemical cycles. Pages 465–570 Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Collins W et al. 2011. Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development 4:1051–1075. Copernicus GmbH.

Naik, V. et al. 2021. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical E Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, J N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, B T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Quinn PK, Bates TS. 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56. Nature Publishing Group.

Six KD, Kloster S, Ilyina T, Archer SD, Zhang K, Maier-Reimer E. 2013. Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nature Climate Change 3:975–978. Nature Publishing Group.

Thornhill G et al. 2021. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics Discussions 21:1105–1126. Copernicus GmbH.

Wang S, Maltrud M, Elliott S, Cameron-Smith P, Jonko A. 2018. Influence of dimethyl sulfide on the carbon cycle and biological production. Biogeochemistry 138:49–68. Springer.

 

Climate-related disasters

Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S. 2013. Global flood risk under climate change. Nature Climate Change 3:816–821. Nature Publishing Group.

Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava A, Sugi M. 2010. Tropical cyclones and climate change. Nature geoscience 3:157–163. Nature Publishing Group.

Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K. 2012. Climate change and disruptions to global fire activity. Ecosphere 3:1–22. Wiley Online Library.

 

Human migration

Bronen R, Chapin FS. 2013. Adaptive governance and institutional strategies for climate-induced community relocations in Alaska. Proceedings of the National Academy of Sciences 110:9320–9325. National Acad Sciences.

Kulp SA, Strauss BH. 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature communications 10:1–12. Nature Publishing Group.

Nearing M, Pruski F, O’neal M. 2004. Expected climate change impacts on soil erosion rates: a review. Journal of soil and water conservation 59:43–50. Soil and Water Conservation Society.

Xu C, Kohler TA, Lenton TM, Svenning J-C, Scheffer M. 2020. Future of the human climate niche. Proceedings of the National Academy of Sciences 117:11350–11355. National Acad Sciences.

 

Human mobility

Obradovich N, Rahwan I. 2019. Risk of a feedback loop between climatic warming and human mobility. Journal of the Royal Society Interface 16:20190058. The Royal Society.

 

Transport routes

Eguíluz VM, Fernández-Gracia J, Irigoien X, Duarte CM. 2016. A quantitative assessment of Arctic shipping in 2010–2014. Scientific reports 6:1–6. Nature Publishing Group.

Ho J. 2010. The implications of Arctic sea ice decline on shipping. Marine Policy 34:713–715. Elsevier.

Humpert M, Raspotnik A. 2012. The future of Arctic shipping. Port Technology International 55:10–11.

 

Energy demand

Isaac M, Van Vuuren DP. 2009. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy policy 37:507–521. Elsevier.

 

Agriculture

Bajželj B, Richards KS. 2014. The positive feedback loop between the impacts of climate change and agricultural expansion and relocation. Land 3:898–916. Multidisciplinary Digital Publishing Institute.

Müller C, Bondeau A, Popp A, Waha K, Fader M. 2010. Climate change impacts on agricultural yields. Washington, DC: World Bank.

Thornton PE et al. 2017. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nature Climate Change 7:496–500. Nature Publishing Group.

 

Coral reefs

Burke L, Reytar K, Spalding M, Perry A. 2011. Reefs at risk revisited. World Resources Institute.

Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner S, Hoegh-Guldberg O. 2013. Limiting global warming to 2 C is unlikely to save most coral reefs. Nature Climate Change 3:165–170. Nature Publishing Group.

Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. 2017. Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science 4:158. Frontiers.

 

Freshwater

Koutroulis A, Papadimitriou L, Grillakis M, Tsanis I, Warren R, Betts R. 2019. Global water availability under high-end climate change: A vulnerability based assessment. Global and Planetary Change 175:52–63. Elsevier.

Lykkebo Petersen K, Heck N, G Reguero B, Potts D, Hovagimian A, Paytan A. 2019. Biological and physical effects of brine discharge from the Carlsbad desalination plant and implications for future desalination plant constructions. Water 11:208. Multidisciplinary Digital Publishing Institute.

Misra AK. 2014. Climate change and challenges of water and food security. International Journal of Sustainable Built Environment 3:153–165. Elsevier.

Shahzad MW, Burhan M, Ng KC. 2019. A standard primary energy approach for comparing desalination processes. npj Clean Water 2:1–7. Nature Publishing Group.

 

Mitigation

Howard P, Livermore MA. 2019. Sociopolitical Feedbacks and Climate Change. Harv. Envtl. L. Rev. 43:119. HeinOnline.

Moore FC, Obradovich N, Lehner F, Baylis P. 2019. Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. Proceedings of the National Academy of Sciences 116:4905–4910. National Acad Sciences.

O’Neill S, Nicholson-Cole S. 2009. “Fear won’t do it” promoting positive engagement with climate change through visual and iconic representations. Science Communication 30:355–379. Sage Publications Sage CA: Los Angeles, CA.

Solaun K, Cerdá E. 2019. Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and sustainable energy Reviews 116:109415. Elsevier.

Van Vuuren DP, Bayer LB, Chuwah C, Ganzeveld L, Hazeleger W, van den Hurk B, Van Noije T, O’Neill B, Strengers BJ. 2012. A comprehensive view on climate change: coupling of earth system and integrated assessment models. Environmental Research Letters 7:024012. IOP Publishing.

 

Policy paralysis

Harder A. 2020. How climate change feeds off itself and gets even worse.

 

Economic growth

Howard P, Livermore MA. 2019. Sociopolitical Feedbacks and Climate Change. Harv. Envtl. L. Rev. 43:119. HeinOnline.

Woodard DL, Davis SJ, Randerson JT. 2019. Economic carbon cycle feedbacks may offset additional warming from natural feedbacks. Proceedings of the National Academy of Sciences 116:759–764. National Acad Sciences.

 

Economic disruption

Howard P, Livermore MA. 2019. Sociopolitical Feedbacks and Climate Change. Harv. Envtl. L. Rev. 43:119. HeinOnline.

 

Political disruption

Howard P, Livermore MA. 2019. Sociopolitical Feedbacks and Climate Change. Harv. Envtl. L. Rev. 43:119. HeinOnline.

 

Geopolitics

Harder A. 2020. How climate change feeds off itself and gets even worse.

 

Human conflict

Hanson M. 2020. War is an ecological catastrophe.